organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

2-Azaniumyl-4-(ethylcarbamoyl)butanoate: the zwitterionic form of the amino acid theanine

Shou-Kai Kang, Yue-Hu Chen, Shao-Song Qian and Hao Hu*

School of Life Science, ShanDong University of Technology, ZiBo 255049, People's Republic of China

Correspondence e-mail: huhao@sdut.edu.cn

Received 2 November 2010; accepted 3 December 2010

Key indicators: single-crystal X-ray study; T = 273 K; mean σ (C–C) = 0.003 Å; disorder in main residue; R factor = 0.051; wR factor = 0.147; data-to-parameter ratio = 15.0.

In the title zwitterion, $C_7H_{14}N_2O_3$, the ethylamino and the 5oxo groups are positionally disordered with occupancy ratios of 0.50:0.50 and 0.70:0.30, respectively. The terminal ethyl -CH₃ group undergoes considerable thermal motion. In the crystal, molecules are linked via N-H···O hydrogen bonds, forming a two-dimensional arrangement propagating in the bc plane.

Related literature

For details of the physiological activity of the amino acid theanine, commonly found in certain teas, see: Li et al. (2006).

Experimental

Crystal data $C_7H_{14}N_2O_3$

 $M_r = 174.20$

Monoclinic, $P2_1/c$	Z = 4
a = 19.606 (6) Å	Mo $K\alpha$ radiation
b = 4.7904 (15) Å	$\mu = 0.10 \text{ mm}^{-1}$
c = 9.812 (3) Å	T = 273 K
$\beta = 90.501 \ (6)^{\circ}$	$0.15 \times 0.12 \times 0.06 \text{ mm}$
$V = 921.5 (5) \text{ Å}^3$	
Data collection	
Bruker SMART CCD area-detector	2218 independent reflections

Bruker SMART CCD area-detector diffractometer 5580 measured reflections

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.051$ $wR(F^2) = 0.147$ S = 1.012218 reflections 148 parameters

 $R_{\rm int} = 0.039$

1276 reflections with $I > 2\sigma(I)$

26 restraints H-atom parameters constrained $\Delta \rho_{\rm max} = 0.23 \ {\rm e} \ {\rm \AA}^ \Delta \rho_{\rm min} = -0.20 \text{ e } \text{\AA}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	$D-{\rm H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N1-H1A\cdots O2^{i}$	0.89	1.89	2.776 (2)	174
$N1 - H1B \cdot \cdot \cdot O1^{ii}$	0.89	1.96	2.8332 (19)	165
$N1 - H1C \cdot \cdot \cdot O1^{iii}$	0.89	1.97	2.850 (2)	171
$N2-H2\cdots O3^{iv}$	0.86	2.16	2.93 (2)	149
$N2' - H2' \cdots O3'^{iv}$	0.86	2.01	2.85 (3)	166

Symmetry codes: (i) $-x, y - \frac{1}{2}, -z + \frac{1}{2}$; (ii) $x, -y + \frac{1}{2}, z - \frac{1}{2}$; (iii) $x, -y + \frac{3}{2}, z - \frac{1}{2}$; (iv) x, y - 1, z.

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

This project was sponsored by the Doctoral Research Foundation of ShanDong University of Technology, People's Republic of China.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2225).

References

Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Li, J., Li, P. & Liu, F. (2006). LWT Food Sci. Technol. 41, 883-889. Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supplementary materials

Acta Cryst. (2011). E67, o82 [doi:10.1107/S1600536810050701]

2-Azaniumyl-4-(ethylcarbamoyl)butanoate: the zwitterionic form of the amino acid theanine

S.-K. Kang, Y.-H. Chen, S.-S. Qian and H. Hu

Comment

In recent years, increasing attention has been drawn towards the physiological and pharmacological applications of theanine, which besides its favorable taste has been reported to be biologically active promoting relaxation, inhibiting negative effects of caffeine and enhancing anti-tumor activity. Moreover, it has been found to have physiological activities including Neuroprotection and anti-obesity (Li *et al.*, 2006).

The title molecule was found to crystallize in the Zwitter ion form (Fig. 1). The ethylamino group (atoms N2,C6,C7/N2',C6',C7': occupancies 0.5/0.5) and the 5-oxo (O2/O2': occupancies 0.7/0.3) atom are positionally disordered. The terminal ethyl CH₃ group (C7 and C7') undergoes considerable thermal motion.

In the crystal the molecules are linked via N-H···O hydrogen bonds to form a two-dimensional arrangement propagating in the *bc*-plane (Table 1, Fig. 2).

Experimental

The title compound was synthesized according to a Chinese Patent (Li, *et al.*, 2006). 20 g of *L*-pyrrolidone carboxylic acid were reacted with 20 g of anhydrous ethylamine in helium gas under a pressure of 7 MPa for 4hr. 23.3 g of the theanine were obtained. The single crystals, of the title compound, suitable for X-ray diffraction analysis, were obtained by the hanging-drop method with water as solvent.

Refinement

The ethylamino group (atoms N2,C6-C7/N2',C6',C7': occupancies 0.5/0.5) and the 5-oxo (O2/O2': occupancies 0.7/0.3) moiety are positionally disordered. The terminal ethyl CH₃ group (C7 and C7') undergoes considerable thermal motion. All the H-atoms were placed in geometrical positions and constrained to ride on their parent atoms: N-H = 0.89 and 0.86 Å for NH₃ and NH H-atoms, respectively, and C—H 0.98, 0.97 and 0.96 Å, for CH, CH₂ and CH₃, respectively, with $U_{iso}(H) = k \times U_{eq}(N \text{ or } C)$ where k = 1.5 for NH₃ and CH₃ H.atoms, and k = 1.2 for all other H-atoms.

Figures

Fig. 1. The molecular structure of the title compound, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. The ethylamino group (atoms N2,C6,C7/N2',C6',C7': occupancies 0.5/0.5) and the 5-oxo (O2/O2': occupancies 0.7/0.3) atom are positionally disordered.

Fig. 2. A view along the *b*-axis of the crystal packing of the title compound. The N-H…O hydrogen bonds are shown as dashed lines - see Table 1 for details (H-atoms not involved in hydrogen bonding have been omitted for clarity).

2-Azaniumyl-4-(ethylcarbamoyl)butanoate

Crystal	data
~	

$C_7H_{14}N_2O_3$	F(000) = 376
$M_r = 174.20$	$D_{\rm x} = 1.256 {\rm ~Mg~m}^{-3}$
Monoclinic, $P2_1/c$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 838 reflections
a = 19.606 (6) Å	$\theta = 4.2 - 23.0^{\circ}$
b = 4.7904 (15) Å	$\mu = 0.10 \text{ mm}^{-1}$
c = 9.812 (3) Å	T = 273 K
$\beta = 90.501 \ (6)^{\circ}$	Prism, colourless
$V = 921.5 (5) \text{ Å}^3$	$0.15\times0.12\times0.06~mm$
Z = 4	

Data collection

Bruker SMART CCD area-detector diffractometer	1276 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.039$
graphite	$\theta_{\text{max}} = 28.3^{\circ}, \ \theta_{\text{min}} = 2.1^{\circ}$
phi and ω scans	$h = -21 \rightarrow 25$
5580 measured reflections	$k = -6 \rightarrow 6$
2218 independent reflections	<i>l</i> = −13→9

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.051$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.147$	H-atom parameters constrained
<i>S</i> = 1.01	$w = 1/[\sigma^2(F_0^2) + (0.0696P)^2]$

	where $P = (F_0^2 + 2F_c^2)/3$
2218 reflections	$(\Delta/\sigma)_{max} < 0.001$
148 parameters	$\Delta \rho_{\text{max}} = 0.23 \text{ e} \text{ Å}^{-3}$
26 restraints	$\Delta \rho_{\rm min} = -0.20 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \text{sigma}(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

	x	у	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$	Occ. (<1)
O1	0.10121 (7)	0.5612 (3)	0.46220 (12)	0.0493 (4)	
02	0.05541 (6)	0.8285 (3)	0.30018 (12)	0.0396 (4)	
O3	0.3108 (4)	0.734 (2)	0.0555 (10)	0.099 (3)	0.70
O3'	0.2918 (9)	0.741 (4)	0.013 (2)	0.062 (3)	0.30
N1	0.07561 (7)	0.4367 (3)	0.10890 (14)	0.0357 (4)	
H1A	0.0325	0.4110	0.1338	0.054*	
H1B	0.0881	0.2996	0.0532	0.054*	
H1C	0.0793	0.5997	0.0660	0.054*	
C1	0.08906 (9)	0.6232 (3)	0.34041 (17)	0.0319 (4)	
C2	0.12060 (9)	0.4366 (3)	0.23210 (16)	0.0313 (4)	
H2A	0.1243	0.2458	0.2675	0.038*	
C3	0.19192 (9)	0.5443 (4)	0.19622 (19)	0.0405 (5)	
H3A	0.1879	0.7328	0.1609	0.049*	
H3B	0.2194	0.5525	0.2788	0.049*	
C4	0.22817 (11)	0.3658 (5)	0.0926 (3)	0.0708 (8)	
H4A	0.2382	0.1859	0.1334	0.085*	
H4B	0.1976	0.3338	0.0159	0.085*	
C5	0.29288 (12)	0.4882 (5)	0.0407 (3)	0.0633 (7)	
N2	0.3323 (10)	0.312 (4)	-0.0317 (13)	0.066 (4)	0.50
H2	0.3217	0.1382	-0.0386	0.079*	0.50
C6	0.3928 (6)	0.420 (2)	-0.0976 (13)	0.099 (4)	0.50
H6A	0.4174	0.5415	-0.0355	0.119*	0.50
H6B	0.3798	0.5269	-0.1775	0.119*	0.50
C7	0.4368 (6)	0.183 (3)	-0.1378 (15)	0.137 (5)	0.50
H7A	0.4453	0.0661	-0.0602	0.205*	0.50
H7B	0.4793	0.2540	-0.1713	0.205*	0.50
H7C	0.4145	0.0771	-0.2081	0.205*	0.50
N2'	0.3403 (10)	0.302 (4)	0.0159 (13)	0.069 (4)	0.50

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

supplementary materials

H2'	0.3293	0.1295	0.0275	0.083*	0.50
C6'	0.4104 (5)	0.357 (2)	-0.0298 (10)	0.087 (3)	0.50
H6'1	0.4414	0.2225	0.0113	0.105*	0.50
H6'2	0.4243	0.5420	-0.0011	0.105*	0.50
C7'	0.4137 (8)	0.336 (4)	-0.1820 (13)	0.159 (5)	0.50
H7'1	0.3892	0.1728	-0.2119	0.238*	0.50
H7'2	0.4604	0.3213	-0.2094	0.238*	0.50
H7'3	0.3935	0.4989	-0.2223	0.238*	0.50

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0812 (11)	0.0390 (8)	0.0277 (7)	0.0014 (7)	-0.0001 (6)	0.0010 (6)
02	0.0481 (8)	0.0319 (7)	0.0389 (7)	0.0056 (6)	0.0051 (6)	0.0004 (6)
O3	0.072 (5)	0.045 (3)	0.181 (8)	-0.013 (3)	0.046 (4)	-0.019 (4)
O3'	0.050 (7)	0.032 (4)	0.104 (7)	-0.001 (5)	0.025 (5)	0.009 (5)
N1	0.0426 (9)	0.0328 (8)	0.0317 (8)	-0.0019 (7)	0.0044 (7)	-0.0035 (6)
C1	0.0394 (10)	0.0263 (9)	0.0301 (9)	-0.0065 (8)	0.0040 (7)	-0.0002 (7)
C2	0.0419 (10)	0.0236 (8)	0.0284 (9)	0.0010 (7)	0.0002 (7)	0.0009 (7)
C3	0.0410 (11)	0.0343 (10)	0.0463 (11)	-0.0018 (8)	0.0019 (8)	-0.0039 (8)
C4	0.0524 (14)	0.0498 (14)	0.111 (2)	-0.0112 (11)	0.0364 (14)	-0.0275 (14)
C5	0.0549 (14)	0.0419 (13)	0.0936 (19)	-0.0060 (11)	0.0271 (13)	-0.0113 (13)
N2	0.068 (7)	0.042 (3)	0.089 (8)	-0.003 (4)	0.045 (6)	-0.013 (5)
C6	0.088 (8)	0.078 (6)	0.134 (9)	0.005 (4)	0.079 (7)	0.008 (6)
C7	0.092 (7)	0.120 (8)	0.199 (13)	0.018 (5)	0.084 (9)	0.003 (7)
N2'	0.048 (4)	0.053 (4)	0.107 (10)	-0.012 (3)	0.032 (7)	-0.010(7)
C6'	0.059 (5)	0.067 (5)	0.137 (9)	-0.006 (4)	0.038 (5)	-0.001 (5)
C7'	0.125 (12)	0.216 (17)	0.136 (9)	-0.046 (11)	0.055 (8)	0.002 (11)

Geometric parameters (Å, °)

O1—C1	1.252 (2)	C5—N2	1.351 (18)
O2—C1	1.246 (2)	N2—C6	1.45 (2)
O3—C5	1.237 (10)	N2—H2	0.8600
O3'—C5	1.24 (2)	C6—C7	1.479 (12)
N1—C2	1.490 (2)	С6—Н6А	0.9700
N1—H1A	0.8900	С6—Н6В	0.9700
N1—H1B	0.8900	С7—Н7А	0.9600
N1—H1C	0.8900	С7—Н7В	0.9600
C1—C2	1.524 (2)	С7—Н7С	0.9600
C2—C3	1.534 (2)	N2'—C6'	1.47 (2)
C2—H2A	0.9800	N2'—H2'	0.8600
C3—C4	1.511 (3)	C6'—C7'	1.499 (13)
С3—НЗА	0.9700	C6'—H6'1	0.9700
С3—Н3В	0.9700	С6'—Н6'2	0.9700
C4—C5	1.491 (3)	С7'—Н7'1	0.9600
C4—H4A	0.9700	С7'—Н7'2	0.9600
C4—H4B	0.9700	С7'—Н7'3	0.9600
C5—N2'	1.31 (2)		

C2—N1—H1A	109.5	O3'—C5—N2	120.2 (13)
C2—N1—H1B	109.5	O3—C5—C4	125.2 (5)
H1A—N1—H1B	109.5	O3'—C5—C4	116.5 (9)
C2—N1—H1C	109.5	N2'—C5—C4	113.6 (9)
H1A—N1—H1C	109.5	N2C5C4	115.2 (9)
H1B—N1—H1C	109.5	C5—N2—C6	119.1 (15)
O2-C1-O1	125.80 (16)	C5—N2—H2	120.5
O2—C1—C2	117.32 (15)	C6—N2—H2	120.5
O1—C1—C2	116.84 (16)	N2—C6—C7	109.2 (11)
N1—C2—C1	108.93 (14)	N2—C6—H6A	109.8
N1—C2—C3	110.36 (14)	С7—С6—Н6А	109.8
C1—C2—C3	109.80 (14)	N2—C6—H6B	109.8
N1—C2—H2A	109.2	С7—С6—Н6В	109.8
C1—C2—H2A	109.2	Н6А—С6—Н6В	108.3
C3—C2—H2A	109.2	C5—N2'—C6'	126.7 (16)
C4—C3—C2	113.51 (15)	C5—N2'—H2'	116.6
С4—С3—НЗА	108.9	C6'—N2'—H2'	116.6
С2—С3—НЗА	108.9	N2'—C6'—C7'	109.9 (10)
С4—С3—Н3В	108.9	N2'—C6'—H6'1	109.7
С2—С3—Н3В	108.9	С7'—С6'—Н6'1	109.7
НЗА—СЗ—НЗВ	107.7	N2'—C6'—H6'2	109.7
C5—C4—C3	114.44 (18)	С7'—С6'—Н6'2	109.7
C5—C4—H4A	108.7	H6'1—C6'—H6'2	108.2
C3—C4—H4A	108.7	С6'—С7'—Н7'1	109.5
C5—C4—H4B	108.7	Сб'—С7'—Н7'2	109.5
C3—C4—H4B	108.7	H7'1—C7'—H7'2	109.5
H4A—C4—H4B	107.6	С6'—С7'—Н7'3	109.5
O3—C5—N2'	117.9 (10)	H7'1—C7'—H7'3	109.5
O3'—C5—N2'	129.3 (13)	H7'2—C7'—H7'3	109.5
O3—C5—N2	119.6 (10)		
O2—C1—C2—N1	-31.8 (2)	O3—C5—N2—C6	-3.8 (16)
O1-C1-C2-N1	150.42 (15)	O3'—C5—N2—C6	26.3 (18)
O2—C1—C2—C3	89.14 (19)	N2'C5N2C6	-95 (5)
O1—C1—C2—C3	-88.62 (18)	C4—C5—N2—C6	173.9 (10)
N1—C2—C3—C4	-61.8 (2)	C5—N2—C6—C7	164.9 (13)
C1—C2—C3—C4	178.08 (18)	O3—C5—N2'—C6'	-16.3 (16)
C2—C3—C4—C5	171.3 (2)	O3'—C5—N2'—C6'	12 (2)
C3—C4—C5—O3	-14.3 (6)	N2—C5—N2'—C6'	84 (5)
C3—C4—C5—O3'	-43.0 (10)	C4—C5—N2'—C6'	-177.0 (10)
C3—C4—C5—N2'	144.8 (7)	C5—N2'—C6'—C7'	-94.9 (15)
C3—C4—C5—N2	168.1 (7)		

Hydrogen-bond geometry (Å, °)

D—H··· A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
N1—H1A····O2 ⁱ	0.89	1.89	2.776 (2)	174
N1—H1B…O1 ⁱⁱ	0.89	1.96	2.8332 (19)	165
N1—H1C···O1 ⁱⁱⁱ	0.89	1.97	2.850 (2)	171

supplementary materials

N2—H2···O3 ^{iv}			0.86	2.16	2.93 (2)	149
N2'—H2'····O3' ^{iv}			0.86	2.01	2.85 (3)	166
	1/0	10 (***)	1/2 1/2 ()	1/2 (1)	1	

Symmetry codes: (i) -x, y-1/2, -z+1/2; (ii) x, -y+1/2, z-1/2; (iii) x, -y+3/2, z-1/2; (iv) x, y-1, z.

Fig. 2

